Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multivariate approximation in total variation, I: equilibrium distributions of Markov jump processes (1512.07400v2)

Published 23 Dec 2015 in math.PR

Abstract: For integer valued random variables, the translated Poisson distributions form a flexible family for approximation in total variation, in much the same way that the normal family is used for approximation in Kolmogorov distance. Using the Stein--Chen method, approximation can often be achieved with error bounds of the same order as those for the CLT. In this paper, an analogous theory, again based on Stein's method, is developed in the multivariate context. The approximating family consists of the equilibrium distributions of a collection of Markov jump processes, whose analogues in one dimension are the immigration--death processes with Poisson distributions as equilibria. The method is illustrated by providing total variation error bounds for the approximation of the equilibrium distribution of one Markov jump process by that of another. In a companion paper, it is shown how to use the method for discrete normal approximation in ${\mathbb Z}d$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube