Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normal approximation on Poisson spaces: Mehler's formula, second order Poincaré inequalities and stabilization (1401.7568v1)

Published 29 Jan 2014 in math.PR

Abstract: We prove a new class of inequalities, yielding bounds for the normal approximation in the Wasserstein and the Kolmogorov distance of functionals of a general Poisson process (Poisson random measure). Our approach is based on an iteration of the classical Poincar\'e inequality, as well as on the use of Malliavin operators, of Stein's method, and of an (integrated) Mehler's formula, providing a representation of the Ornstein-Uhlenbeck semigroup in terms of thinned Poisson processes. Our estimates only involve first and second order differential operators, and have consequently a clear geometric interpretation. In particular we will show that our results are perfectly tailored to deal with the normal approximation of geometric functionals displaying a weak form of stabilization, and with non-linear functionals of Poisson shot-noise processes. We discuss two examples of stabilizing functionals in great detail: (i) the edge length of the $k$-nearest neighbour graph, (ii) intrinsic volumes of $k$-faces of Voronoi tessellations. In all these examples we obtain rates of convergence (in the Kolmogorov and the Wasserstein distance) that one can reasonably conjecture to be optimal, thus significantly improving previous findings in the literature. As a necessary step in our analysis, we also derive new lower bounds for variances of Poisson functionals.

Summary

We haven't generated a summary for this paper yet.