Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acting Selfish for the Good of All: Contextual Bandits for Resource-Efficient Transmission of Vehicular Sensor Data (2007.09921v1)

Published 20 Jul 2020 in cs.NI and eess.SP

Abstract: as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.