Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reinforcement Learning Approach for Efficient Opportunistic Vehicle-to-Cloud Data Transfer (2001.05321v1)

Published 15 Jan 2020 in cs.NI

Abstract: Vehicular crowdsensing is anticipated to become a key catalyst for data-driven optimization in the Intelligent Transportation System (ITS) domain. Yet, the expected growth in massive Machine-type Communication (mMTC) caused by vehicle-to-cloud transmissions will confront the cellular network infrastructure with great capacity-related challenges. A cognitive way for achieving relief without introducing additional physical infrastructure is the application of opportunistic data transfer for delay-tolerant applications. Hereby, the clients schedule their data transmissions in a channel-aware manner in order to avoid retransmissions and interference with other cell users. In this paper, we introduce a novel approach for this type of resourceaware data transfer which brings together supervised learning for network quality prediction with reinforcement learningbased decision making. The performance evaluation is carried out using data-driven network simulation and real world experiments in the public cellular networks of multiple Mobile Network Operators (MNOs) in different scenarios. The proposed transmission scheme significantly outperforms state-of-the-art probabilistic approaches in most scenarios and achieves data rate improvements of up to 181% in uplink and up to 270% in downlink transmission direction in comparison to conventional periodic data transfer.

Citations (8)

Summary

We haven't generated a summary for this paper yet.