Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning based context-predictive car-to-cloud communication using multi-layer connectivity maps for upcoming 5G networks (1805.06603v2)

Published 17 May 2018 in cs.NI

Abstract: While cars were only considered as means of personal transportation for a long time, they are currently transcending to mobile sensor nodes that gather highly up-to-date information for crowdsensing-enabled big data services in a smart city context. Consequently, upcoming 5G communication networks will be confronted with massive increases in Machine-type Communication (MTC) and require resource-efficient transmission methods in order to optimize the overall system performance and provide interference-free coexistence with human data traffic that is using the same public cellular network. In this paper, we bring together mobility prediction and machine learning based channel quality estimation in order to improve the resource-efficiency of car-to-cloud data transfer by scheduling the transmission time of the sensor data with respect to the anticipated behavior of the communication context. In a comprehensive field evaluation campaign, we evaluate the proposed context-predictive approach in a public cellular network scenario where it is able to increase the average data rate by up to 194% while simultaneously reducing the mean uplink power consumption by up to 54%.

Citations (23)

Summary

We haven't generated a summary for this paper yet.