Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Understanding Bias in Machine Learning (1909.01866v1)

Published 2 Sep 2019 in cs.LG and stat.ML

Abstract: Bias is known to be an impediment to fair decisions in many domains such as human resources, the public sector, health care etc. Recently, hope has been expressed that the use of machine learning methods for taking such decisions would diminish or even resolve the problem. At the same time, machine learning experts warn that machine learning models can be biased as well. In this article, our goal is to explain the issue of bias in machine learning from a technical perspective and to illustrate the impact that biased data can have on a machine learning model. To reach such a goal, we develop interactive plots to visualizing the bias learned from synthetic data.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.