Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Encoder-Decoder Learning Framework towards Offline Handwritten Mathematical Expression Recognition Based on Multi-Scale Deep Neural Network (1902.05376v3)

Published 8 Feb 2019 in cs.CV and cs.LG

Abstract: Offline handwritten mathematical expression recognition is a challenging task, because handwritten mathematical expressions mainly have two problems in the process of recognition. On one hand, it is how to correctly recognize different mathematical symbols. On the other hand, it is how to correctly recognize the two-dimensional structure existing in mathematical expressions. Inspired by recent work in deep learning, a new neural network model that combines a Multi-Scale convolutional neural network (CNN) with an Attention recurrent neural network (RNN) is proposed to identify two-dimensional handwritten mathematical expressions as one-dimensional LaTeX sequences. As a result, the model proposed in the present work has achieved a WER error of 25.715% and ExpRate of 28.216%.

Citations (3)

Summary

We haven't generated a summary for this paper yet.