Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognizing Handwritten Mathematical Expressions as LaTex Sequences Using a Multiscale Robust Neural Network (2003.00817v1)

Published 26 Feb 2020 in cs.CV and eess.IV

Abstract: In this paper, a robust multiscale neural network is proposed to recognize handwritten mathematical expressions and output LaTeX sequences, which can effectively and correctly focus on where each step of output should be concerned and has a positive effect on analyzing the two-dimensional structure of handwritten mathematical expressions and identifying different mathematical symbols in a long expression. With the addition of visualization, the model's recognition process is shown in detail. In addition, our model achieved 49.459% and 46.062% ExpRate on the public CROHME 2014 and CROHME 2016 datasets. The present model results suggest that the state-of-the-art model has better robustness, fewer errors, and higher accuracy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.