Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Training Data Generation of Handwritten Formulas using Generative Adversarial Networks with Self-Attention (2106.09432v1)

Published 17 Jun 2021 in cs.CV and cs.LG

Abstract: The recognition of handwritten mathematical expressions in images and video frames is a difficult and unsolved problem yet. Deep convectional neural networks are basically a promising approach, but typically require a large amount of labeled training data. However, such a large training dataset does not exist for the task of handwritten formula recognition. In this paper, we introduce a system that creates a large set of synthesized training examples of mathematical expressions which are derived from LaTeX documents. For this purpose, we propose a novel attention-based generative adversarial network to translate rendered equations to handwritten formulas. The datasets generated by this approach contain hundreds of thousands of formulas, making it ideal for pretraining or the design of more complex models. We evaluate our synthesized dataset and the recognition approach on the CROHME 2014 benchmark dataset. Experimental results demonstrate the feasibility of the approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.