Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stein-type covariance identities: Klaassen, Papathanasiou and Olkin-Shepp type bounds for arbitrary target distributions (1812.10344v1)

Published 26 Dec 2018 in math.PR

Abstract: In this paper, we present a minimal formalism for Stein operators which leads to different probabilistic representations of solutions to Stein equations. These in turn provide a wide family of Stein-Covariance identities which we put to use for revisiting the very classical topic of bounding the variance of functionals of random variables. Applying the Cauchy-Schwarz inequality yields first order upper and lower Klaassen-type variance bounds. A probabilistic representation of Lagrange's identity (i.e. Cauchy-Schwarz with remainder) leads to Papathanasiou-type variance expansions of arbitrary order. A matrix Cauchy-Schwarz inequality leads to Olkin-Shepp type covariance bounds. All results hold for univariate target distribution under very weak assumptions (in particular they hold for continuous and discrete distributions alike). Many concrete illustrations are provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.