Stein-type covariance identities: Klaassen, Papathanasiou and Olkin-Shepp type bounds for arbitrary target distributions (1812.10344v1)
Abstract: In this paper, we present a minimal formalism for Stein operators which leads to different probabilistic representations of solutions to Stein equations. These in turn provide a wide family of Stein-Covariance identities which we put to use for revisiting the very classical topic of bounding the variance of functionals of random variables. Applying the Cauchy-Schwarz inequality yields first order upper and lower Klaassen-type variance bounds. A probabilistic representation of Lagrange's identity (i.e. Cauchy-Schwarz with remainder) leads to Papathanasiou-type variance expansions of arbitrary order. A matrix Cauchy-Schwarz inequality leads to Olkin-Shepp type covariance bounds. All results hold for univariate target distribution under very weak assumptions (in particular they hold for continuous and discrete distributions alike). Many concrete illustrations are provided.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.