Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

On Stein's Method for Multivariate Self-Decomposable Laws With Finite First Moment (1809.02050v1)

Published 6 Sep 2018 in math.PR

Abstract: We develop a multidimensional Stein methodology for non-degenerate self-decomposable random vectors in $\mathbb{R}d$ having finite first moment. Building on previous univariate findings, we solve an integro-partial differential Stein equation by a mixture of semigroup and Fourier analytic methods. Then, under a second moment assumption, we introduce a notion of Stein kernel and an associated Stein discrepancy specifically designed for infinitely divisible distributions. Combining these new tools, we obtain quantitative bounds on smooth-Wasserstein distances between a probability measure in $\mathbb{R}d$ and a non-degenerate self-decomposable target law with finite second moment. Finally, under an appropriate spectral gap assumption, we investigate, via variational methods, the existence of Stein kernels. In particular, this leads to quantitative versions of classical results on characterizations of probability distributions by variational functionals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.