An extended Stein-type covariance identity for the Pearson family with applications to lower variance bounds (1007.3662v2)
Abstract: For an absolutely continuous (integer-valued) r.v. $X$ of the Pearson (Ord) family, we show that, under natural moment conditions, a Stein-type covariance identity of order $k$ holds (cf. [Goldstein and Reinert, J. Theoret. Probab. 18 (2005) 237--260]). This identity is closely related to the corresponding sequence of orthogonal polynomials, obtained by a Rodrigues-type formula, and provides convenient expressions for the Fourier coefficients of an arbitrary function. Application of the covariance identity yields some novel expressions for the corresponding lower variance bounds for a function of the r.v. $X$, expressions that seem to be known only in particular cases (for the Normal, see [Houdr\'{e} and Kagan, J. Theoret. Probab. 8 (1995) 23--30]; see also [Houdr\'{e} and P\'{e}rez-Abreu, Ann. Probab. 23 (1995) 400--419] for corresponding results related to the Wiener and Poisson processes). Some applications are also given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.