Papers
Topics
Authors
Recent
Search
2000 character limit reached

First order covariance inequalities via Stein's method

Published 19 Jun 2019 in math.PR, math.ST, and stat.TH | (1906.08372v1)

Abstract: We propose probabilistic representations for inverse Stein operators (i.e. solutions to Stein equations) under general conditions; in particular we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and non-uniform Stein factors (i.e. bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary {univariate} target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases, and expressed in terms of objects familiar within the context of Stein's method. Applications of the Cauchy-Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincar\'e inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.