Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-training Graph Neural Networks with Kernels (1811.06930v1)

Published 16 Nov 2018 in cs.LG and stat.ML

Abstract: Many machine learning techniques have been proposed in the last few years to process data represented in graph-structured form. Graphs can be used to model several scenarios, from molecules and materials to RNA secondary structures. Several kernel functions have been defined on graphs that coupled with kernelized learning algorithms, have shown state-of-the-art performances on many tasks. Recently, several definitions of Neural Networks for Graph (GNNs) have been proposed, but their accuracy is not yet satisfying. In this paper, we propose a task-independent pre-training methodology that allows a GNN to learn the representation induced by state-of-the-art graph kernels. Then, the supervised learning phase will fine-tune this representation for the task at hand. The proposed technique is agnostic on the adopted GNN architecture and kernel function, and shows consistent improvements in the predictive performance of GNNs in our preliminary experimental results.

Citations (27)

Summary

We haven't generated a summary for this paper yet.