Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Graph Convolutional Networks with Non-Parametric Activation Functions (1802.09405v1)

Published 26 Feb 2018 in cs.NE, cs.LG, and stat.ML

Abstract: Graph neural networks (GNNs) are a class of neural networks that allow to efficiently perform inference on data that is associated to a graph structure, such as, e.g., citation networks or knowledge graphs. While several variants of GNNs have been proposed, they only consider simple nonlinear activation functions in their layers, such as rectifiers or squashing functions. In this paper, we investigate the use of graph convolutional networks (GCNs) when combined with more complex activation functions, able to adapt from the training data. More specifically, we extend the recently proposed kernel activation function, a non-parametric model which can be implemented easily, can be regularized with standard $\ell_p$-norms techniques, and is smooth over its entire domain. Our experimental evaluation shows that the proposed architecture can significantly improve over its baseline, while similar improvements cannot be obtained by simply increasing the depth or size of the original GCN.

Citations (7)

Summary

We haven't generated a summary for this paper yet.