Papers
Topics
Authors
Recent
2000 character limit reached

Bias Reduction via End-to-End Shift Learning: Application to Citizen Science (1811.00458v4)

Published 1 Nov 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Citizen science projects are successful at gathering rich datasets for various applications. However, the data collected by citizen scientists are often biased --- in particular, aligned more with the citizens' preferences than with scientific objectives. We propose the Shift Compensation Network (SCN), an end-to-end learning scheme which learns the shift from the scientific objectives to the biased data while compensating for the shift by re-weighting the training data. Applied to bird observational data from the citizen science project eBird, we demonstrate how SCN quantifies the data distribution shift and outperforms supervised learning models that do not address the data bias. Compared with competing models in the context of covariate shift, we further demonstrate the advantage of SCN in both its effectiveness and its capability of handling massive high-dimensional data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.