Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Preliminary results of using k-Nearest Neighbours Regression to estimate the redshift of radio selected datasets (1810.10714v1)

Published 25 Oct 2018 in astro-ph.GA

Abstract: In the near future, all-sky radio surveys are set to produce catalogues of tens of millions of sources with limited multi-wavelength photometry. Spectroscopic redshifts will only be possible for a small fraction of these new-found sources. In this paper, we provide the first in-depth investigation into the use of k-Nearest Neighbours Regression for the estimation of redshift of these sources. We use the Australia Telescope Large Area Survey radio data, combined with the Spitzer Wide-Area Infrared Extragalactic Survey infra-red, the Dark Energy Survey optical and the Australian Dark Energy Survey spectroscopic survey data. We then reduce the depth of photometry to match what is expected from upcoming Evolutionary Map of the Universe survey, testing against both data sets. To examine the generalisation of our methods, we test one of the sub-fields of Australia Telescope Large Area Survey against the other. We achieve an outlier rate of ~10% across all tests, showing that the k-Nearest Neighbours regression algorithm is an acceptable method of estimating redshift, and would perform better given a sample training set with uniform redshift coverage.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.