Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum data compression by principal component analysis (1810.10710v2)

Published 25 Oct 2018 in quant-ph

Abstract: Data compression can be achieved by reducing the dimensionality of high-dimensional but approximately low-rank datasets, which may in fact be described by the variation of a much smaller number of parameters. It often serves as a preprocessing step to surmount the curse of dimensionality and to gain efficiency, and thus it plays an important role in machine learning and data mining. In this paper, we present a quantum algorithm that compresses an exponentially large high-dimensional but approximately low-rank dataset in quantum parallel, by dimensionality reduction (DR) based on principal component analysis (PCA), the most popular classical DR algorithm. We show that the proposed algorithm achieves exponential speedup over the classical PCA algorithm when the original dataset are projected onto a polylogarithmically low-dimensional space. The compressed dataset can then be further processed to implement other tasks of interest, with significantly less quantum resources. As examples, we apply this algorithm to reduce data dimensionality for two important quantum machine learning algorithms, quantum support vector machine and quantum linear regression for prediction. This work demonstrates that quantum machine learning can be released from the curse of dimensionality to solve problems of practical importance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube