Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CG-DIQA: No-reference Document Image Quality Assessment Based on Character Gradient (1807.04047v1)

Published 11 Jul 2018 in cs.CV

Abstract: Document image quality assessment (DIQA) is an important and challenging problem in real applications. In order to predict the quality scores of document images, this paper proposes a novel no-reference DIQA method based on character gradient, where the OCR accuracy is used as a ground-truth quality metric. Character gradient is computed on character patches detected with the maximally stable extremal regions (MSER) based method. Character patches are essentially significant to character recognition and therefore suitable for use in estimating document image quality. Experiments on a benchmark dataset show that the proposed method outperforms the state-of-the-art methods in estimating the quality score of document images.

Citations (14)

Summary

We haven't generated a summary for this paper yet.