Papers
Topics
Authors
Recent
2000 character limit reached

DocIQ: A Benchmark Dataset and Feature Fusion Network for Document Image Quality Assessment (2509.17012v1)

Published 21 Sep 2025 in cs.CV, cs.LG, and eess.IV

Abstract: Document image quality assessment (DIQA) is an important component for various applications, including optical character recognition (OCR), document restoration, and the evaluation of document image processing systems. In this paper, we introduce a subjective DIQA dataset DIQA-5000. The DIQA-5000 dataset comprises 5,000 document images, generated by applying multiple document enhancement techniques to 500 real-world images with diverse distortions. Each enhanced image was rated by 15 subjects across three rating dimensions: overall quality, sharpness, and color fidelity. Furthermore, we propose a specialized no-reference DIQA model that exploits document layout features to maintain quality perception at reduced resolutions to lower computational cost. Recognizing that image quality is influenced by both low-level and high-level visual features, we designed a feature fusion module to extract and integrate multi-level features from document images. To generate multi-dimensional scores, our model employs independent quality heads for each dimension to predict score distributions, allowing it to learn distinct aspects of document image quality. Experimental results demonstrate that our method outperforms current state-of-the-art general-purpose IQA models on both DIQA-5000 and an additional document image dataset focused on OCR accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: