Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Enumeration of Irreducible Polynomials over $\text{GF}(q)$ with Prescribed Coefficients (1610.06878v3)

Published 21 Oct 2016 in math.AG and math.NT

Abstract: We present an efficient deterministic algorithm which outputs exact expressions in terms of $n$ for the number of monic degree $n$ irreducible polynomials over $\mathbb{F}{q}$ of characteristic $p$ for which the first $l < p$ coefficients are prescribed, provided that $n$ is coprime to $p$. Each of these counts is $\frac{1}{n}(q{n-l} + \mathcal{O}(q{n/2}))$. The main idea behind the algorithm is to associate to an equivalent problem a set of Artin-Schreier curves defined over $\mathbb{F}_q$ whose number of $\mathbb{F}{qn}$-rational affine points must be combined. This is accomplished by computing their zeta functions using a $p$-adic algorithm due to Lauder and Wan. Using the computational algebra system Magma one can, for example, compute the zeta functions of the arising curves for $q=5$ and $l=4$ very efficiently, and we detail a proof-of-concept demonstration. Due to the failure of Newton's identities in positive characteristic, the $l \ge p$ cases are seemingly harder. Nevertheless, we use an analogous algorithm to compute example curves for $q = 2$ and $l \le 7$, and for $q = 3$ and $l = 3$. Again using Magma, for $q = 2$ we computed the relevant zeta functions for $l = 4$ and $l = 5$, obtaining explicit formulae for these open problems for $n$ odd, as well as for subsets of these problems for all $n$, while for $q = 3$ we obtained explicit formulae for $l = 3$ and $n$ coprime to $3$. We also discuss some of the computational challenges and theoretical questions arising from this approach in the general case and propose some natural open problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.