Fibre Products of Supersingular Curves and the Enumeration of Irreducible Polynomials with Prescribed Coefficients (1605.07229v3)
Abstract: For any positive integers $n\geq 3, r\geq 1$ we present formulae for the number of irreducible polynomials of degree $n$ over the finite field $\mathbb{F}_{2r}$ where the coefficients of $x{n-1}$, $x{n-2}$ and $x{n-3}$ are zero. Our proofs involve counting the number of points on certain algebraic curves over finite fields, a technique which arose from Fourier-analysing the known formulae for the $\mathbb{F}_2$ base field cases, reverse-engineering an economical new proof and then extending it. This approach gives rise to fibre products of supersingular curves and makes explicit why the formulae have period $24$ in $n$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.