Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An improved asymptotic formula for the distribution of irreducible polynomials in arithmetic progressions over Fq (1911.05295v2)

Published 13 Nov 2019 in math.CO

Abstract: Let $\mathbb{F}{q}$ be a finite field with $q$ elements and $\mathbb{F}{q}[x]$ the ring of polynomials over $\mathbb{F}{q}$. Let $l(x), k(x)$ be coprime polynomials in $\mathbb{F}{q}[x]$ and $\Phi(k)$ the Euler function in $\mathbb{F}{q}[x]$. Let $\pi(l, k; n)$ be the number of monic irreducible polynomials of degree $n$ in $\mathbb{F}{q}[x]$ which are congruent to $l(x)$ module $k(x)$. For any positive integer $n$, we denote by $\Omega(n)$ the least prime divisor of $n$. In this paper, we show that $$\pi(l, k; n)=\frac{1}{\Phi(k)}\frac{q{n}}{n}+O\left(n{\alpha}\right)+O\left(\frac{q{\frac{n}{\Omega{(n)}}}}{n}\right),$$ where $\alpha$ only depends on the choice of $k(x)\in\Fq$. Note that the above error term improves the one implied by Weil's conjecture. Our approach is completely elementary.

Summary

We haven't generated a summary for this paper yet.