Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Fractional Gaussian fields: a survey (1407.5598v2)

Published 21 Jul 2014 in math.PR

Abstract: We discuss a family of random fields indexed by a parameter $s\in \mathbb{R}$ which we call the fractional Gaussian fields, given by [ \mathrm{FGF}_s(\mathbb{R}d)=(-\Delta){-s/2} W, ] where $W$ is a white noise on $\mathbb{R}d$ and $(-\Delta){-s/2}$ is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter $H = s-d/2$. In one dimension, examples of $\mathrm{FGF}_s$ processes include Brownian motion ($s = 1$) and fractional Brownian motion ($1/2 < s < 3/2$). Examples in arbitrary dimension include white noise ($s = 0$), the Gaussian free field ($s = 1$), the bi-Laplacian Gaussian field ($s = 2$), the log-correlated Gaussian field ($s = d/2$), L\'evy's Brownian motion ($s = d/2 + 1/2$), and multidimensional fractional Brownian motion ($d/2 < s < d/2 + 1$). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the $\mathrm{FGF}_s$ with $s \in (0,1)$ can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic $2s$-stable L\'evy process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.