Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fractional Brownian field indexed by $L^2$ and a varying Hurst parameter (1312.6069v2)

Published 20 Dec 2013 in math.PR

Abstract: Using structures of Abstract Wiener Spaces, we define a fractional Brownian field indexed by a product space $(0,1/2] \times L2(T,m)$, $(T,m)$ a separable measure space, where the first coordinate corresponds to the Hurst parameter of fractional Brownian motion. This field encompasses a large class of existing fractional Brownian processes, such as L\'evy fractional Brownian motions and multiparameter fractional Brownian motions, and provides a setup for new ones. We prove that it has satisfactory incremental variance in both coordinates and derive certain continuity and H\"older regularity properties in relation with metric entropy. Also, a sharp estimate of the small ball probabilities is provided, generalizing a result on L\'evy fractional Brownian motion. Then, we apply these general results to multiparameter and set-indexed processes, proving the existence of processes with prescribed local H\"older regularity on general indexing collections.

Summary

We haven't generated a summary for this paper yet.