Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Constructing fractional Gaussian fields from long-range divisible sandpiles on the torus (1808.06078v3)

Published 18 Aug 2018 in math-ph, math.AP, math.MP, and math.PR

Abstract: In \cite{Cipriani2016}, the authors proved that, with the appropriate rescaling, the odometer of the (nearest neighbours) divisible sandpile on the unit torus converges to a bi-Laplacian field. Here, we study $\alpha$-long-range divisible sandpiles, similar to those introduced in \cite{Frometa2018}. We show that, for $\alpha \in (0,2)$, the limiting field is a fractional Gaussian field on the torus with parameter $\alpha/2$. However, for $\alpha \in [2,\infty)$, we recover the bi-Laplacian field. This provides an alternative construction of fractional Gaussian fields such as the Gaussian Free Field or membrane model using a diffusion based on the generator of L\'evy walks. The central tool for obtaining our results is a careful study of the spectrum of the fractional Laplacian on the discrete torus. More specifically, we need the rate of divergence of the eigenvalues as we let the side length of the discrete torus go to infinity. As a side result, we obtain precise asymptotics for the eigenvalues of discrete fractional Laplacians. Furthermore, we determine the order of the expected maximum of the discrete fractional Gaussian field with parameter $\gamma=\min {\alpha,2}$ and $\alpha \in \mathbb{R}_+\backslash{2}$ on a finite grid.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.