2000 character limit reached
Rectifiability via a square function and Preiss' theorem (1402.2799v4)
Published 12 Feb 2014 in math.CA and math.AP
Abstract: Let $E$ be a set in $\mathbb Rd$ with finite $n$-dimensional Hausdorff measure $Hn$ such that $\liminf_{r\to0}r{-n} Hn(B(x,r)\cap E)>0$ for $Hn$-a.e. $x\in E$. In this paper it is shown that $E$ is $n$-rectifiable if and only if $$\int_01 \left|\frac{Hn(B(x,r)\cap E)}{rn} - \frac{Hn(B(x,2r)\cap E)}{(2r)n}\right|2\,\frac{dr}r < \infty$$ for $Hn$-a.e. $x\in E$; and also if and only if $$ \lim_{r\to0}\left(\frac{Hn(B(x,r)\cap E)}{rn} - \frac{Hn(B(x,2r)\cap E)}{(2r)n}\right) = 0$$ for $Hn$-a.e. $x\in E$. Other more general results involving Radon measures are also proved.