Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The weak lower density condition and uniform rectifiability (2005.02030v2)

Published 5 May 2020 in math.CA and math.MG

Abstract: We show that an Ahlfors $d$-regular set $E$ in $\mathbb{R}{n}$ is uniformly rectifiable if the set of pairs $(x,r)\in E\times (0,\infty)$ for which there exists $y \in B(x,r)$ and $0<t<r$ satisfying $\mathscr{H}^{d}_{\infty}(E\cap B(y,t))<(2t)^{d}-\varepsilon(2r)^d$ is a Carleson set for every $\varepsilon\>0$. To prove this, we generalize a result of Schul by proving, if $X$ is a $C$-doubling metric space, $\varepsilon,\rho\in (0,1)$, $A>1$, and $X_{n}$ is a sequence of maximal $2{-n}$-separated sets in $X$, and $\mathscr{B}={B(x,2{-n}):x\in X_{n},n\in \mathbb{N}}$, then [ \sum \left{r_{B}{s}: B\in \mathscr{B}, \frac{\mathscr{H}{s}_{\rho r_{B}}(X\cap AB)}{(2r_{B}){s}}>1+\varepsilon\right} \lesssim_{C,A,\varepsilon,\rho,s} \mathscr{H}{s}(X). ] This is a quantitative version of the classical result that for a metric space $X$ of finite $s$-dimensional Hausdorff measure, the upper $s$-dimensional densities are at most $1$ $\mathscr{H}{s}$-almost everywhere.

Summary

We haven't generated a summary for this paper yet.