Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Square functions and uniform rectifiability (1401.3382v1)

Published 14 Jan 2014 in math.CA

Abstract: In this paper it is shown that an Ahlfors-David $n$-dimensional measure $\mu$ on $\mathbb{R}d$ is uniformly $n$-rectifiable if and only if for any ball $B(x_0,R)$ centered at $\operatorname{supp}(\mu)$, $$ \int_0R \int_{x\in B(x_0,R)} \left|\frac{\mu(B(x,r))}{rn} - \frac{\mu(B(x,2r))}{(2r)n} \right|2\,d\mu(x)\,\frac{dr}r \leq c\, Rn.$$ Other characterizations of uniform $n$-rectifiability in terms of smoother square functions are also obtained.

Summary

We haven't generated a summary for this paper yet.