Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimating Photometric Redshifts of Quasars via K-nearest Neighbor Approach Based on Large Survey Databases (1305.5023v1)

Published 22 May 2013 in astro-ph.IM

Abstract: We apply one of lazy learning methods named k-nearest neighbor algorithm (kNN) to estimate the photometric redshifts of quasars, based on various datasets from the Sloan Digital Sky Survey (SDSS), UKIRT Infrared Deep Sky Survey (UKIDSS) and Wide-field Infrared Survey Explorer (WISE) (the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN arrives at the best performance when k is different with a special input pattern for a special dataset. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results show that generally the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. By comparing the performance of various methods for photometric redshift estimation of quasars, kNN based on KD-Tree shows its superiority with the best accuracy for our case.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.