Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Cycle integrals of a sesqui-harmonic Maass form of weight zero (1212.6695v1)

Published 30 Dec 2012 in math.NT

Abstract: Borcherds-Zagier bases of the spaces of weakly holomorphic modular forms of weights 1/2 and 3/2 share the Fourier coefficients which are traces of singular moduli. Recently, Duke, Imamo={g}lu, and T\'{o}th have constructed a basis of the space of weight 1/2 mock modular forms, each member in which has Zagier's generating series of traces of singular moduli as its shadow. They also showed that Fourier coefficients of their mock modular forms are sums of cycle integrals of the $j$-function which are real quadratic analogues of singular moduli. In this paper, we prove the Fourier coefficients of a basis of the space of weight 3/2 mock modular forms are sums of cycle integrals of a sesqui-harmonic Maass form of weight zero whose image under hyperbolic Laplacian is the $j$-function. Furthermore, we express these sums as regularized inner products of weakly holomorphic modular forms of weight 1/2.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.