Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Structures for pairs of mock modular forms with the Zagier duality (1212.0370v2)

Published 3 Dec 2012 in math.NT

Abstract: Zagier introduced special bases for weakly holomorphic modular forms to give the new proof of Borcherds' theorem on the infinite product expansions of integer weight modular forms on $\SL_2(\ZZ)$ with a Heegner divisor. These good bases appear in pairs, and they satisfy a striking duality, which is now called the Zagier duality. After the result of Zagier, this type duality was studied broadly in various view points including the theory of a mock modular form. In this paper, we consider this problem with the Eichler cohomology theory, especially the supplementary function theory developed by Knopp. Using holomorphic Poincar\'e series and their supplementary functions, we construct a pair of families of vector-valued harmonic weak Maass forms satisfying the Zagier duality with integer weights $-k$ and $k+2$ respectively, $k>0$, for a $H$-group. We also investigate the structures of them such as the images under the differential operators $D{k+1}$ and $\xi_{-k}$ and quadric relations of the critical values of their $L$-functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube