Papers
Topics
Authors
Recent
Search
2000 character limit reached

Shintani theta lifts of harmonic Maass forms

Published 12 Dec 2017 in math.NT | (1712.04491v1)

Abstract: We define a regularized Shintani theta lift which maps weight $2k+2$ ($k \in \Z, k \geq 0$) harmonic Maass forms for congruence subgroups to (sesqui-)harmonic Maass forms of weight $3/2+k$ for the Weil representation of an even lattice of signature $(1,2)$. We show that its Fourier coefficients are given by traces of CM values and regularized cycle integrals of the input harmonic Maass form. Further, the Shintani theta lift is related via the $\xi$-operator to the Millson theta lift studied in our earlier work. We use this connection to construct $\xi$-preimages of Zagier's weight $1/2$ generating series of singular moduli and of some of Ramanujan's mock theta functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.