Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weierstrass mock modular forms and elliptic curves (1406.0443v6)

Published 2 Jun 2014 in math.NT

Abstract: Mock modular forms, which give the theoretical framework for Ramanujan's enigmatic mock theta functions, play many roles in mathematics. We study their role in the context of modular parameterizations of elliptic curves $E/\mathbb{Q}$. We show that mock modular forms which arise from Weierstrass $\zeta$-functions encode the central $L$-values and $L$-derivatives which occur in the Birch and Swinnerton-Dyer Conjecture. By defining a theta lift using a kernel recently studied by H\"ovel, we obtain canonical weight 1/2 harmonic Maass forms whose Fourier coefficients encode the vanishing of these values for the quadratic twists of $E$. We employ results of Bruinier and the third author, which builds on seminal work of Gross, Kohnen, Shimura, Waldspurger, and Zagier. We also obtain $p$-adic formulas for the corresponding weight 2 newform using the action of the Hecke algebra on the Weierstrass mock modular form.

Summary

We haven't generated a summary for this paper yet.