Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sums of quadratic functions with two discriminants (1703.07951v1)

Published 23 Mar 2017 in math.NT

Abstract: Zagier in [4] discusses a construction of a function $F_{k,D}(x)$ defined for an even integer $k \geq 2$, and a positive discriminant $D$. This construction is intimately related to half-integral weight modular forms. In particular, the average value of this function is a constant multiple of the $D$-th Fourier coefficient of weight $k+1/2$ Eisenstein series constructed by H. Cohen in \cite{Cohen}. In this note we consider a construction which works both for even and odd positive integers $k$. Our function $F_{k,D,d}(x)$ depends on two discriminants $d$ and $D$ with signs sign$(d)=$ sign$(D)=(-1)k$, degenerates to Zagier's function when $d=1$, namely, [ F_{k,D,1}(x)=F_{k,D}(x), ] and has very similar properties. In particular, we prove that the average value of $F_{k,D,d}(x)$ is again a Fourier coefficient of H. Cohen's Eisenstein series of weight $k+1/2$, while now the integer $k \geq 2$ is allowed to be both even and odd.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.