Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On a class of distributions stable under random summation (1008.3150v1)

Published 18 Aug 2010 in math.PR and stat.ME

Abstract: We investigate a family of distributions having a property of stability-under-addition, provided that the number $\nu$ of added-up random variables in the random sum is also a random variable. We call the corresponding property a \,$\nu$-stability and investigate the situation with the semigroup generated by the generating function of $\nu$ is commutative. Using results from the theory of iterations of analytic functions, we show that the characteristic function of such a $\nu$-stable distribution can be represented in terms of Chebyshev polynomials, and for the case of $\nu$-normal distribution, the resulting characteristic function corresponds to the hyperbolic secant distribution. We discuss some specific properties of the class and present particular examples.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.