Chiral Spin Symmetry in QCD & Condensed Matter
Updated 24 December 2025
- Chiral Spin Symmetry is an extended symmetry that mixes right- and left-chiral components, unifying chiral rotations across diverse physical systems.
- It emerges in QCD above the chiral crossover, where chromoelectric interactions dominate, leading to multiplet degeneracies and novel spectral properties.
- In condensed matter and photonics, this symmetry underpins topological phases and robust transport phenomena, exemplified by chiral-induced spin selectivity.
Chiral spin symmetry refers to an extended symmetry structure—most prominently realized as SU(2)CS and its flavor-spin generalization SU(2NF)—that unifies and generalizes chiral symmetry in quantum field theories and emerges in a variety of condensed matter, cold atom, photonic, and high-energy systems. While it manifests differently depending on the context, its cardinal feature is the mixing of right- and left-chiral components (or, in lattice systems, spin up and spin down, or pseudo-spin degrees of freedom) under a continuous or discrete group, often in concert with unique symmetry-breaking and topological phenomena.
1. Group-Theoretical Structure: SU(2)CS and Embedding
The generator set of chiral spin symmetry SU(2)CS is realized on Dirac fermions by
Σ1=γk,Σ2=−iγ5γk,Σ3=γ5
where γk is any one of the four Hermitian Dirac gamma matrices, so k=1,2,3,4 (Euclidean); see (Catillo et al., 2019, Glozman, 2018). These satisfy the su(2) algebra: [Σa,Σb]=2iϵabcΣc
The finite SU(2)CS transformation acts as
ψ→ψ′=exp(iϵnΣn/2)ψ
This group mixes right- and left-handed components of the Dirac spinor. In the chiral basis (ψR,ψL), the action is a rotation in the chiral space, explicitly exchanging chirality for the Σ1,2 generators, while Σ3 acts as the usual axial U(1)A rotation (Glozman, 2018).
Chiral SU(2)L×SU(2)R\timesU(1)_AisasubgroupofthelargerSU(2N_F).Fortwoflavors(N_F=2),thegeneratorsofSU(4)are</p><p>T^A = \{\tau^a\otimes 1_D,~1_F\otimes\Sigma^n,~\tau^a\otimes\Sigma^n\},~a=1,2,3;~n=1,2,3</p><p>where\tau^aarePaulimatricesinflavorspace,andthegroupcontains15generators(<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/1810.09886"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,2018</a>).TheusualchiralgroupisembeddedinSU(4)asapropersubgroup.</p><h2class=′paper−heading′id=′chiral−spin−symmetry−in−quantum−chromodynamics′>2.ChiralSpinSymmetryinQuantumChromodynamics</h2><h3class=′paper−heading′id=′symmetry−properties−of−the−lagrangian′>SymmetryPropertiesoftheLagrangian</h3><p>ThemasslessDiracLagrangianinQCDcanbedecomposedinafixedLorentzframeas</p><p>\mathcal{L}_{q} = \bar{\psi}i\gamma^\mu D_\mu \psi = \underbrace{\bar{\psi}\gamma^0 D_0 \psi}_{\text{electric}} + \underbrace{\bar{\psi}\gamma^i D_i \psi}_{\text{kinetic + magnetic}}$</p>
<p>The "electric" term is invariant under SU(2)$_{CS},as[\Sigma^n, \gamma^0]=0;however,thespatialkineticandchromo−magnetictermsbreakSU(2)_{CS},since[\Sigma^n, \gamma^i] \neq 0(<ahref="/papers/1810.09886"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,2018</a>,<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>).</p><p>Inthecolorchargesector,thecoupling</p><p>\mathcal{L}_{\text{int}} = \psi^\dagger T^a \psi A_0^a</p><p>isstrictlyinvariantunderSU(2)_{CS},while\psi^\dagger \gamma^i T^a \psi A_i^a$ is not. The confining "Coulomb" part of the QCD Hamiltonian, which represents instantaneous chromoelectric interactions, is thus SU(2)$_{CS}−invariant(<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/1810.09886"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,2018</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsen,21Dec2025</a>).</p><h3class=′paper−heading′id=′emergence−and−physical−regimes′>EmergenceandPhysicalRegimes</h3><p>AfterthechiralcrossovertemperatureT_\mathrm{ch}(\approx 130\text{–}160$ MeV), QCD enters an intermediate "stringy fluid" regime (up to $T_d \sim 2\text{–}3\,T_\mathrm{ch}),wherechromoelectricinteractionsdominateoverchromomagneticandkineticterms.TheeffectiveactionbecomesapproximatelySU(2)_{CS}invariant(<ahref="/papers/2211.11628"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsen,21Dec2025</a>).Inthisphase:</p><ul><li>ChiralandU(1)_Asymmetriesarerestored:latticecorrelatorsforscalarandpseudoscalarchannelscoincide,andvectorandaxial−vectorchannelsbecomedegenerate(<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozmanetal.,2022</a>).</li><li>Novelmultipletstructuresemerge,correspondingtoSU(2)_{CS}andSU(4):mesonicandbaryoniccorrelatorswithinthesemultipletscollapsetocommonvaluesundernear−zeromodetruncation,orinthethermalwindowaboveT_\mathrm{ch}(<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsen,21Dec2025</a>).</li><li>AboveT_d \sim 3\,T_\mathrm{ch},Debyescreeningsetsin,andtheSU(2)_{CS}degeneraciesdisappear;QCDsmoothlytransitionstotheweaklyinteracting<ahref="https://www.emergentmind.com/topics/quark−gluon−plasma"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">quark−gluonplasma</a>whereonlyordinarychiralsymmetriesremain(<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsenetal.,2022</a>).</li></ul><p>Thisthree−regimestructureissubstantiatedbythescalingofbulkobservableswithN_c:hadron<ahref="https://www.emergentmind.com/topics/genetic−algorithms−gas"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">gas</a>(N_c^0),stringyfluid(N_c^1),quark−gluonplasma(N_c^2)(<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>).</p><h3class=′paper−heading′id=′spectral−and−topological−aspects′>SpectralandTopologicalAspects</h3><p>Truncatingthelow−lyingeigenmodesoftheDiracoperatorinthevacuumrestoresU(1)_AandSU(2)_L\timesSU(2)_Rsymmetriesautomatically,butSU(2)_{CS}andSU(4)multipletstructurerequiresadditionalSU(2)_{CS}−symmetricdynamicsamongthehigh−lyingmodes,linkedtothepurechromoelectric(confining)sector(<ahref="/papers/1904.01969"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Catilloetal.,2019</a>).</p><p>AboveT_\mathrm{ch}$, spatial and temporal correlators, as well as pion and bottomonium spectral functions, give direct evidence for persistent hadron-like excitations— "thermoparticles"—consistent with an emergent SU(2)$_{CS}$ (<a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>).</p>
<h2 class='paper-heading' id='connections-to-chiral-spin-liquids-and-topological-phases-in-condensed-matter'>3. Connections to Chiral Spin Liquids and Topological Phases in Condensed Matter</h2>
<p>Chiral spin symmetry extends beyond QCD into electronic/magnetic systems:</p>
<ul>
<li>In chiral spin liquids (CSL), realized on kagome, triangular, and honeycomb lattices, "chiral spin symmetry" may refer to the global spin rotation SO(3) algebra preserved in the presence of a time-reversal and mirror-breaking <a href="https://www.emergentmind.com/topics/scalar-spin-chirality" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">scalar spin chirality</a> term (e.g., $S_i\cdot(S_j\times S_k)),whiletranslationandrotationsymmetriespersist(<ahref="/papers/2505.01491"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Boseetal.,2May2025</a>,<ahref="/papers/1511.02226"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Cincioetal.,2015</a>,<ahref="/papers/2204.10329"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Boseetal.,2022</a>).</li><li>Thechiralspinliquidistopologicallyordered,withsemionicquasiparticlesanduniquesymmetryfractionalizationproperties.Theseanyonsprojectivelyrepresentthesymmetrygroup,withfractionalquantumnumbersunderlatticetranslationandinversion,classifiedbygroupcohomology(e.g.,H^2(p6m^{*}, \mathbb{Z}_2) \simeq \mathbb{Z}_2^4)(<ahref="/papers/1511.02226"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Cincioetal.,2015</a>).</li><li>Directtransitionsfrom<ahref="https://www.emergentmind.com/topics/chiral−soliton−lattices−csls"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">CSLs</a>tononcoplanarspincrystalphases(e.g.,XYZumbrellaandoctahedralspincrystals)aresubjecttopreciseanomaly−matchingandcompatibilityconstraintsbetweenthetopologicalinvariantsofthespinliquidandorderedstate(<ahref="/papers/2505.01491"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Boseetal.,2May2025</a>,<ahref="/papers/2204.10329"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Boseetal.,2022</a>).Chern−Simons−matterfieldtheoryaffordsanexplicitpathbetweenthesephases,ensuringthecorrectmatchingoffractionalizationandBerry−phaseanomalies.</li></ul><h2class=′paper−heading′id=′chiral−spin−symmetry−in−chiral−materials−and−spintronics′>4.ChiralSpinSymmetryinChiralMaterialsandSpintronics</h2><p>Inchiralmolecularandcrystallinesystems:</p><ul><li>Electronsinchiralmaterialswithscrewsymmetrycarryapseudo−angularmomentum(PAM),composedofbothspinandorbitalparts.Theunderlyingchiral−spinsymmetryrelatestotheconservationofthisPAMquantumnumber,transformingunderthescrewoperationasj = m + s$ (<a href="/papers/2306.01664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Wang et al., 2023</a>).</li>
<li>At chiral–achiral interfaces, PAM is typically converted into spin polarization due to boundary conditions, providing a symmetry-based explanation for the chiral-induced spin selectivity (CISS) effect. In ideal cases, the spin polarization can be nearly 100% (<a href="/papers/2306.01664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Wang et al., 2023</a>).</li>
<li>Current-induced spin magnetization (CISM) in chiral crystals requires not just chiral spin–orbit coupling but also the breaking of a "spin-glide" symmetry, a combined crystal-momentum translation and spin flip. While chirality (the electric-toroidal multipole $G_0$) is necessary for CISM, inter-layer hopping that breaks spin-glide symmetry is also essential. Thus, some non-chiral electronic couplings play a critical role in realizing chiral spin phenomena (<a href="/papers/2409.19317" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Hirakida et al., 28 Sep 2024</a>, <a href="/papers/2508.19519" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Jeong et al., 27 Aug 2025</a>).</li>
<li>Nonequilibrium charge currents in chiral wires can dynamically break time-reversal and screw symmetries, leading to robust spin and orbital polarization even when the ground-state Hamiltonian is symmetric—deeply connected to the CISS effect and relevant for spintronics (<a href="/papers/2508.19519" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Jeong et al., 27 Aug 2025</a>).</li>
</ul>
<h2 class='paper-heading' id='chiral-spin-symmetry-in-photonic-and-engineering-systems'>5. Chiral Spin Symmetry in Photonic and Engineering Systems</h2>
<p>The analog of chiral spin symmetry appears in photonics, where the conservation of total (spin plus orbital) angular momentum in optical fields leads to "chirally twisted" spin textures:</p>
<ul>
<li>The spin density in photonic systems, defined as $\mathbf{S}(\mathbf{r}) = \frac{\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r})}{||\mathbf{E}(\mathbf{r})||^2}$, exhibits local chiral twisting under the conservation law for total angular momentum (<a href="/papers/2104.12982" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Shi et al., 2021</a>).</li>
<li>This symmetry, protected by the rotational invariance of Maxwell's equations, underlies the robust formation of skyrmion- and domain-wall–like textures in light, with implications for subwavelength optical trapping and chiral sensing.</li>
</ul>
<h2 class='paper-heading' id='lattice-qcd-evidence-regimes-and-phase-diagram'>6. Lattice QCD Evidence, Regimes, and Phase Diagram</h2>
<p>The body of lattice QCD evidence establishes:</p>
<ul>
<li>Emergence of SU(2)$_{CS}(andSU(2N_F))inathermalwindowabovethechiralcrossover,persistinguptoT_d,asseeninmultipletdegeneracyamongspatial/temporalmesonandbaryoncorrelators(<ahref="/papers/2512.18830"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsen,21Dec2025</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozmanetal.,2022</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2209.10235"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,2022</a>).</li><li>Breakdownofthermalperturbationtheoryinscreeningmassesandthemaintenanceofnon−perturbative,hadron−likespectralfeaturesthroughtheSU(2)_{CS}$ window (<a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2402.05852" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 8 Feb 2024</a>).</li>
<li>The "stringy fluid" regime, with scaling of bulk quantities and conserved-charge fluctuations as $N_c^1,separatesthehadrongas(N_c^0)fromtheQGP(N_c^2),andisdirectlylinkedtotheonsetanddisappearanceofSU(2)_{CS}symmetry(<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>).</li><li>Inthephasediagramatfinitebaryonchemicalpotential,theSU(2)_{CS}$ symmetric band extends as a curved strip, and a parity-doubled "quarkyonic" phase at low $T,large\mu_BmayrealizeSU(2)_{CS}symmetryatdensity(<ahref="/papers/2211.11628"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozmanetal.,2022</a>).</li></ul><h2class=′paper−heading′id=′physical−implications−and−experimental−manifestations′>7.PhysicalImplicationsandExperimentalManifestations</h2><ul><li>TheemergenceofchiralspinsymmetryinQCDimpliesthathadronmassesarenotdirectlytiedtothequarkcondensate;confinementandchiralsymmetrybreakingaredistinctphenomena(<ahref="/papers/2510.14084"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,15Oct2025</a>).</li><li>Asadirectexperimentalprediction,theabsenceorsuppressionofthechiralmagneticeffect(CME)inheavy−ioncollisionsaboveT_\mathrm{ch}isexplainedasaconsequenceofapproximateSU(2)_{CS}symmetry,forbiddingmacroscopicchiralityimbalance(<ahref="/papers/2004.07525"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Glozman,2020</a>).</li><li>Incondensedmatter,chiralspinsymmetryunderpinstherobusttransportphenomenainchiralmolecularwiresandtheconstructionoftopologicalphasesinfrustratedmagnets(chiralspinliquids,noncoplanarspincrystals)(<ahref="/papers/2306.01664"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Wangetal.,2023</a>,<ahref="/papers/1512.00324"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Bierietal.,2015</a>,<ahref="/papers/2505.01491"title=""rel="nofollow"data−turbo="false"class="assistant−link"x−datax−tooltip.raw="">Boseetal.,2May2025</a>).</li></ul><hr><p><strong>SummaryTable:CoreAspectsofChiralSpinSymmetryinQCD</strong></p><divclass=′overflow−x−automax−w−fullmy−4′><tableclass=′tableborder−collapsew−full′style=′table−layout:fixed′><thead><tr><th>Feature</th><th>SU(2)_{CS}Algebra</th><th>EmergenceRegime</th></tr></thead><tbody><tr><td>Generators</td><td>\Sigma^1 = \gamma_k,\Sigma^2 = -i\gamma_5\gamma_k,\Sigma^3 = \gamma_5</td><td>QCDT_\mathrm{ch},T>T_d$
| Experimental Consequence |
CME suppression, spectral continuity across deconfinement |
Lattice QCD, RHIC/LHC |
| Many-body Analogues |
Chiral spin liquids, topological phases with symmetry fractionalization |
Frustrated magnets |