Papers
Topics
Authors
Recent
2000 character limit reached

Chiral Spin Symmetry in QCD & Condensed Matter

Updated 24 December 2025
  • Chiral Spin Symmetry is an extended symmetry that mixes right- and left-chiral components, unifying chiral rotations across diverse physical systems.
  • It emerges in QCD above the chiral crossover, where chromoelectric interactions dominate, leading to multiplet degeneracies and novel spectral properties.
  • In condensed matter and photonics, this symmetry underpins topological phases and robust transport phenomena, exemplified by chiral-induced spin selectivity.

Chiral spin symmetry refers to an extended symmetry structure—most prominently realized as SU(2)CS_{CS} and its flavor-spin generalization SU(2NF_F)—that unifies and generalizes chiral symmetry in quantum field theories and emerges in a variety of condensed matter, cold atom, photonic, and high-energy systems. While it manifests differently depending on the context, its cardinal feature is the mixing of right- and left-chiral components (or, in lattice systems, spin up and spin down, or pseudo-spin degrees of freedom) under a continuous or discrete group, often in concert with unique symmetry-breaking and topological phenomena.

1. Group-Theoretical Structure: SU(2)CS_{CS} and Embedding

The generator set of chiral spin symmetry SU(2)CS_{CS} is realized on Dirac fermions by

Σ1=γk,Σ2=iγ5γk,Σ3=γ5\Sigma^1 = \gamma_k,\quad \Sigma^2 = -i \gamma_5 \gamma_k,\quad \Sigma^3 = \gamma_5

where γk\gamma_k is any one of the four Hermitian Dirac gamma matrices, so k=1,2,3,4k=1,2,3,4 (Euclidean); see (Catillo et al., 2019, Glozman, 2018). These satisfy the su(2) algebra: [Σa,Σb]=2iϵabcΣc[\Sigma^a,\Sigma^b]=2i\epsilon^{abc}\Sigma^c The finite SU(2)CS_{CS} transformation acts as

ψψ=exp(iϵnΣn/2)ψ\psi \to \psi' = \exp(i\epsilon^n \Sigma^n/2) \psi

This group mixes right- and left-handed components of the Dirac spinor. In the chiral basis (ψR,ψL\psi_R, \psi_L), the action is a rotation in the chiral space, explicitly exchanging chirality for the Σ1,2\Sigma^{1,2} generators, while Σ3\Sigma^3 acts as the usual axial U(1)A_A rotation (Glozman, 2018).

Chiral SU(2)L×_L \timesSU(2)R_R\timesU(1)U(1)_AisasubgroupofthelargerSU(2N is a subgroup of the larger SU(2N_F).Fortwoflavors(). For two flavors (N_F=2),thegeneratorsofSU(4)are</p><p>), the generators of SU(4) are</p> <p>T^A = \{\tau^a\otimes 1_D,~1_F\otimes\Sigma^n,~\tau^a\otimes\Sigma^n\},~a=1,2,3;~n=1,2,3</p><p>where</p> <p>where \tau^aarePaulimatricesinflavorspace,andthegroupcontains are Pauli matrices in flavor space, and the group contains 15generators(<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/1810.09886"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,2018</a>).TheusualchiralgroupisembeddedinSU(4)asapropersubgroup.</p><h2class=paperheadingid=chiralspinsymmetryinquantumchromodynamics>2.ChiralSpinSymmetryinQuantumChromodynamics</h2><h3class=paperheadingid=symmetrypropertiesofthelagrangian>SymmetryPropertiesoftheLagrangian</h3><p>ThemasslessDiracLagrangianinQCDcanbedecomposedinafixedLorentzframeas</p><p> generators (<a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>, <a href="/papers/1810.09886" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 2018</a>). The usual chiral group is embedded in SU(4) as a proper subgroup.</p> <h2 class='paper-heading' id='chiral-spin-symmetry-in-quantum-chromodynamics'>2. Chiral Spin Symmetry in Quantum Chromodynamics</h2><h3 class='paper-heading' id='symmetry-properties-of-the-lagrangian'>Symmetry Properties of the Lagrangian</h3> <p>The massless Dirac Lagrangian in QCD can be decomposed in a fixed Lorentz frame as</p> <p>\mathcal{L}_{q} = \bar{\psi}i\gamma^\mu D_\mu \psi = \underbrace{\bar{\psi}\gamma^0 D_0 \psi}_{\text{electric}} + \underbrace{\bar{\psi}\gamma^i D_i \psi}_{\text{kinetic + magnetic}}$</p> <p>The &quot;electric&quot; term is invariant under SU(2)$_{CS},as, as [\Sigma^n, \gamma^0]=0;however,thespatialkineticandchromomagnetictermsbreakSU(2); however, the spatial kinetic and chromo-magnetic terms break SU(2)_{CS},since, since [\Sigma^n, \gamma^i] \neq 0(<ahref="/papers/1810.09886"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,2018</a>,<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>).</p><p>Inthecolorchargesector,thecoupling</p><p> (<a href="/papers/1810.09886" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 2018</a>, <a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>).</p> <p>In the color charge sector, the coupling</p> <p>\mathcal{L}_{\text{int}} = \psi^\dagger T^a \psi A_0^a</p><p>isstrictlyinvariantunderSU(2)</p> <p>is strictly invariant under SU(2)_{CS},while, while \psi^\dagger \gamma^i T^a \psi A_i^a$ is not. The confining &quot;Coulomb&quot; part of the QCD Hamiltonian, which represents instantaneous chromoelectric interactions, is thus SU(2)$_{CS}invariant(<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/1810.09886"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,2018</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsen,21Dec2025</a>).</p><h3class=paperheadingid=emergenceandphysicalregimes>EmergenceandPhysicalRegimes</h3><p>Afterthechiralcrossovertemperature-invariant (<a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>, <a href="/papers/1810.09886" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 2018</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2402.05852" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 8 Feb 2024</a>, <a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>).</p> <h3 class='paper-heading' id='emergence-and-physical-regimes'>Emergence and Physical Regimes</h3> <p>After the chiral crossover temperature T_\mathrm{ch}( (\approx 130\text{–}160$ MeV), QCD enters an intermediate &quot;stringy fluid&quot; regime (up to $T_d \sim 2\text{–}3\,T_\mathrm{ch}),wherechromoelectricinteractionsdominateoverchromomagneticandkineticterms.TheeffectiveactionbecomesapproximatelySU(2)), where chromoelectric interactions dominate over chromomagnetic and kinetic terms. The effective action becomes approximately SU(2)_{CS}invariant(<ahref="/papers/2211.11628"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsen,21Dec2025</a>).Inthisphase:</p><ul><li>ChiralandU(1) invariant (<a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2402.05852" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 8 Feb 2024</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>). In this phase:</p> <ul> <li>Chiral and U(1)_Asymmetriesarerestored:latticecorrelatorsforscalarandpseudoscalarchannelscoincide,andvectorandaxialvectorchannelsbecomedegenerate(<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozmanetal.,2022</a>).</li><li>Novelmultipletstructuresemerge,correspondingtoSU(2) symmetries are restored: lattice correlators for scalar and pseudoscalar channels coincide, and vector and axial-vector channels become degenerate (<a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>, <a href="/papers/2204.05083" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman et al., 2022</a>).</li> <li>Novel multiplet structures emerge, corresponding to SU(2)_{CS}andSU(4):mesonicandbaryoniccorrelatorswithinthesemultipletscollapsetocommonvaluesundernearzeromodetruncation,orinthethermalwindowabove and SU(4): mesonic and baryonic correlators within these multiplets collapse to common values under near-zero mode truncation, or in the thermal window above T_\mathrm{ch}(<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2512.18830"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsen,21Dec2025</a>).</li><li>Above (<a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>).</li> <li>Above T_d \sim 3\,T_\mathrm{ch},Debyescreeningsetsin,andtheSU(2), Debye screening sets in, and the SU(2)_{CS}degeneraciesdisappear;QCDsmoothlytransitionstotheweaklyinteracting<ahref="https://www.emergentmind.com/topics/quarkgluonplasma"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">quarkgluonplasma</a>whereonlyordinarychiralsymmetriesremain(<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsenetal.,2022</a>).</li></ul><p>Thisthreeregimestructureissubstantiatedbythescalingofbulkobservableswith degeneracies disappear; QCD smoothly transitions to the weakly interacting <a href="https://www.emergentmind.com/topics/quark-gluon-plasma" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">quark-gluon plasma</a> where only ordinary chiral symmetries remain (<a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>).</li> </ul> <p>This three-regime structure is substantiated by the scaling of bulk observables with N_c:hadron<ahref="https://www.emergentmind.com/topics/geneticalgorithmsgas"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">gas</a>(: hadron <a href="https://www.emergentmind.com/topics/genetic-algorithms-gas" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">gas</a> (N_c^0),stringyfluid(), stringy fluid (N_c^1),quarkgluonplasma(), quark-gluon plasma (N_c^2)(<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>).</p><h3class=paperheadingid=spectralandtopologicalaspects>SpectralandTopologicalAspects</h3><p>TruncatingthelowlyingeigenmodesoftheDiracoperatorinthevacuumrestoresU(1)) (<a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>).</p> <h3 class='paper-heading' id='spectral-and-topological-aspects'>Spectral and Topological Aspects</h3> <p>Truncating the low-lying eigenmodes of the Dirac operator in the vacuum restores U(1)_AandSU(2) and SU(2)_L\timesSU(2)SU(2)_Rsymmetriesautomatically,butSU(2) symmetries automatically, but SU(2)_{CS}andSU(4)multipletstructurerequiresadditionalSU(2) and SU(4) multiplet structure requires additional SU(2)_{CS}symmetricdynamicsamongthehighlyingmodes,linkedtothepurechromoelectric(confining)sector(<ahref="/papers/1904.01969"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Catilloetal.,2019</a>).</p><p>Above-symmetric dynamics among the high-lying modes, linked to the pure chromoelectric (confining) sector (<a href="/papers/1904.01969" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Catillo et al., 2019</a>).</p> <p>Above T_\mathrm{ch}$, spatial and temporal correlators, as well as pion and bottomonium spectral functions, give direct evidence for persistent hadron-like excitations— &quot;thermoparticles&quot;—consistent with an emergent SU(2)$_{CS}$ (<a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>).</p> <h2 class='paper-heading' id='connections-to-chiral-spin-liquids-and-topological-phases-in-condensed-matter'>3. Connections to Chiral Spin Liquids and Topological Phases in Condensed Matter</h2> <p>Chiral spin symmetry extends beyond QCD into electronic/magnetic systems:</p> <ul> <li>In chiral spin liquids (CSL), realized on kagome, triangular, and honeycomb lattices, &quot;chiral spin symmetry&quot; may refer to the global spin rotation SO(3) algebra preserved in the presence of a time-reversal and mirror-breaking <a href="https://www.emergentmind.com/topics/scalar-spin-chirality" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">scalar spin chirality</a> term (e.g., $S_i\cdot(S_j\times S_k)),whiletranslationandrotationsymmetriespersist(<ahref="/papers/2505.01491"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Boseetal.,2May2025</a>,<ahref="/papers/1511.02226"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Cincioetal.,2015</a>,<ahref="/papers/2204.10329"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Boseetal.,2022</a>).</li><li>Thechiralspinliquidistopologicallyordered,withsemionicquasiparticlesanduniquesymmetryfractionalizationproperties.Theseanyonsprojectivelyrepresentthesymmetrygroup,withfractionalquantumnumbersunderlatticetranslationandinversion,classifiedbygroupcohomology(e.g.,), while translation and rotation symmetries persist (<a href="/papers/2505.01491" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bose et al., 2 May 2025</a>, <a href="/papers/1511.02226" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Cincio et al., 2015</a>, <a href="/papers/2204.10329" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bose et al., 2022</a>).</li> <li>The chiral spin liquid is topologically ordered, with semionic quasiparticles and unique symmetry fractionalization properties. These anyons projectively represent the symmetry group, with fractional quantum numbers under lattice translation and inversion, classified by group cohomology (e.g., H^2(p6m^{*}, \mathbb{Z}_2) \simeq \mathbb{Z}_2^4)(<ahref="/papers/1511.02226"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Cincioetal.,2015</a>).</li><li>Directtransitionsfrom<ahref="https://www.emergentmind.com/topics/chiralsolitonlatticescsls"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">CSLs</a>tononcoplanarspincrystalphases(e.g.,XYZumbrellaandoctahedralspincrystals)aresubjecttopreciseanomalymatchingandcompatibilityconstraintsbetweenthetopologicalinvariantsofthespinliquidandorderedstate(<ahref="/papers/2505.01491"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Boseetal.,2May2025</a>,<ahref="/papers/2204.10329"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Boseetal.,2022</a>).ChernSimonsmatterfieldtheoryaffordsanexplicitpathbetweenthesephases,ensuringthecorrectmatchingoffractionalizationandBerryphaseanomalies.</li></ul><h2class=paperheadingid=chiralspinsymmetryinchiralmaterialsandspintronics>4.ChiralSpinSymmetryinChiralMaterialsandSpintronics</h2><p>Inchiralmolecularandcrystallinesystems:</p><ul><li>Electronsinchiralmaterialswithscrewsymmetrycarryapseudoangularmomentum(PAM),composedofbothspinandorbitalparts.TheunderlyingchiralspinsymmetryrelatestotheconservationofthisPAMquantumnumber,transformingunderthescrewoperationas) (<a href="/papers/1511.02226" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Cincio et al., 2015</a>).</li> <li>Direct transitions from <a href="https://www.emergentmind.com/topics/chiral-soliton-lattices-csls" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">CSLs</a> to noncoplanar spin crystal phases (e.g., XYZ umbrella and octahedral spin crystals) are subject to precise anomaly-matching and compatibility constraints between the topological invariants of the spin liquid and ordered state (<a href="/papers/2505.01491" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bose et al., 2 May 2025</a>, <a href="/papers/2204.10329" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bose et al., 2022</a>). Chern-Simons-matter field theory affords an explicit path between these phases, ensuring the correct matching of fractionalization and Berry-phase anomalies.</li> </ul> <h2 class='paper-heading' id='chiral-spin-symmetry-in-chiral-materials-and-spintronics'>4. Chiral Spin Symmetry in Chiral Materials and Spintronics</h2> <p>In chiral molecular and crystalline systems:</p> <ul> <li>Electrons in chiral materials with screw symmetry carry a pseudo-angular momentum (PAM), composed of both spin and orbital parts. The underlying chiral-spin symmetry relates to the conservation of this PAM quantum number, transforming under the screw operation as j = m + s$ (<a href="/papers/2306.01664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Wang et al., 2023</a>).</li> <li>At chiral–achiral interfaces, PAM is typically converted into spin polarization due to boundary conditions, providing a symmetry-based explanation for the chiral-induced spin selectivity (CISS) effect. In ideal cases, the spin polarization can be nearly 100% (<a href="/papers/2306.01664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Wang et al., 2023</a>).</li> <li>Current-induced spin magnetization (CISM) in chiral crystals requires not just chiral spin–orbit coupling but also the breaking of a &quot;spin-glide&quot; symmetry, a combined crystal-momentum translation and spin flip. While chirality (the electric-toroidal multipole $G_0$) is necessary for CISM, inter-layer hopping that breaks spin-glide symmetry is also essential. Thus, some non-chiral electronic couplings play a critical role in realizing chiral spin phenomena (<a href="/papers/2409.19317" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Hirakida et al., 28 Sep 2024</a>, <a href="/papers/2508.19519" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Jeong et al., 27 Aug 2025</a>).</li> <li>Nonequilibrium charge currents in chiral wires can dynamically break time-reversal and screw symmetries, leading to robust spin and orbital polarization even when the ground-state Hamiltonian is symmetric—deeply connected to the CISS effect and relevant for spintronics (<a href="/papers/2508.19519" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Jeong et al., 27 Aug 2025</a>).</li> </ul> <h2 class='paper-heading' id='chiral-spin-symmetry-in-photonic-and-engineering-systems'>5. Chiral Spin Symmetry in Photonic and Engineering Systems</h2> <p>The analog of chiral spin symmetry appears in photonics, where the conservation of total (spin plus orbital) angular momentum in optical fields leads to &quot;chirally twisted&quot; spin textures:</p> <ul> <li>The spin density in photonic systems, defined as $\mathbf{S}(\mathbf{r}) = \frac{\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r})}{||\mathbf{E}(\mathbf{r})||^2}$, exhibits local chiral twisting under the conservation law for total angular momentum (<a href="/papers/2104.12982" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Shi et al., 2021</a>).</li> <li>This symmetry, protected by the rotational invariance of Maxwell&#39;s equations, underlies the robust formation of skyrmion- and domain-wall–like textures in light, with implications for subwavelength optical trapping and chiral sensing.</li> </ul> <h2 class='paper-heading' id='lattice-qcd-evidence-regimes-and-phase-diagram'>6. Lattice QCD Evidence, Regimes, and Phase Diagram</h2> <p>The body of lattice QCD evidence establishes:</p> <ul> <li>Emergence of SU(2)$_{CS}(andSU(2N (and SU(2N_F))inathermalwindowabovethechiralcrossover,persistingupto)) in a thermal window above the chiral crossover, persisting up to T_d,asseeninmultipletdegeneracyamongspatial/temporalmesonandbaryoncorrelators(<ahref="/papers/2512.18830"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsen,21Dec2025</a>,<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>,<ahref="/papers/2211.11628"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozmanetal.,2022</a>,<ahref="/papers/2402.05852"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,8Feb2024</a>,<ahref="/papers/2209.10235"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,2022</a>).</li><li>Breakdownofthermalperturbationtheoryinscreeningmassesandthemaintenanceofnonperturbative,hadronlikespectralfeaturesthroughtheSU(2), as seen in multiplet degeneracy among spatial/temporal meson and baryon correlators (<a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2204.05083" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman et al., 2022</a>, <a href="/papers/2402.05852" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 8 Feb 2024</a>, <a href="/papers/2209.10235" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 2022</a>).</li> <li>Breakdown of thermal perturbation theory in screening masses and the maintenance of non-perturbative, hadron-like spectral features through the SU(2)_{CS}$ window (<a href="/papers/2512.18830" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen, 21 Dec 2025</a>, <a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>, <a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2402.05852" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 8 Feb 2024</a>).</li> <li>The &quot;stringy fluid&quot; regime, with scaling of bulk quantities and conserved-charge fluctuations as $N_c^1,separatesthehadrongas(, separates the hadron gas (N_c^0)fromtheQGP() from the QGP (N_c^2),andisdirectlylinkedtotheonsetanddisappearanceofSU(2)), and is directly linked to the onset and disappearance of SU(2)_{CS}symmetry(<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>).</li><li>Inthephasediagramatfinitebaryonchemicalpotential,theSU(2) symmetry (<a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>).</li> <li>In the phase diagram at finite baryon chemical potential, the SU(2)_{CS}$ symmetric band extends as a curved strip, and a parity-doubled &quot;quarkyonic&quot; phase at low $T,large, large \mu_BmayrealizeSU(2) may realize SU(2)_{CS}symmetryatdensity(<ahref="/papers/2211.11628"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Philipsenetal.,2022</a>,<ahref="/papers/2204.05083"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozmanetal.,2022</a>).</li></ul><h2class=paperheadingid=physicalimplicationsandexperimentalmanifestations>7.PhysicalImplicationsandExperimentalManifestations</h2><ul><li>TheemergenceofchiralspinsymmetryinQCDimpliesthathadronmassesarenotdirectlytiedtothequarkcondensate;confinementandchiralsymmetrybreakingaredistinctphenomena(<ahref="/papers/2510.14084"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,15Oct2025</a>).</li><li>Asadirectexperimentalprediction,theabsenceorsuppressionofthechiralmagneticeffect(CME)inheavyioncollisionsabove symmetry at density (<a href="/papers/2211.11628" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Philipsen et al., 2022</a>, <a href="/papers/2204.05083" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman et al., 2022</a>).</li> </ul> <h2 class='paper-heading' id='physical-implications-and-experimental-manifestations'>7. Physical Implications and Experimental Manifestations</h2> <ul> <li>The emergence of chiral spin symmetry in QCD implies that hadron masses are not directly tied to the quark condensate; confinement and chiral symmetry breaking are distinct phenomena (<a href="/papers/2510.14084" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 15 Oct 2025</a>).</li> <li>As a direct experimental prediction, the absence or suppression of the chiral magnetic effect (CME) in heavy-ion collisions above T_\mathrm{ch}isexplainedasaconsequenceofapproximateSU(2) is explained as a consequence of approximate SU(2)_{CS}symmetry,forbiddingmacroscopicchiralityimbalance(<ahref="/papers/2004.07525"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Glozman,2020</a>).</li><li>Incondensedmatter,chiralspinsymmetryunderpinstherobusttransportphenomenainchiralmolecularwiresandtheconstructionoftopologicalphasesinfrustratedmagnets(chiralspinliquids,noncoplanarspincrystals)(<ahref="/papers/2306.01664"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Wangetal.,2023</a>,<ahref="/papers/1512.00324"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Bierietal.,2015</a>,<ahref="/papers/2505.01491"title=""rel="nofollow"dataturbo="false"class="assistantlink"xdataxtooltip.raw="">Boseetal.,2May2025</a>).</li></ul><hr><p><strong>SummaryTable:CoreAspectsofChiralSpinSymmetryinQCD</strong></p><divclass=overflowxautomaxwfullmy4><tableclass=tablebordercollapsewfullstyle=tablelayout:fixed><thead><tr><th>Feature</th><th>SU(2) symmetry, forbidding macroscopic chirality imbalance (<a href="/papers/2004.07525" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Glozman, 2020</a>).</li> <li>In condensed matter, chiral spin symmetry underpins the robust transport phenomena in chiral molecular wires and the construction of topological phases in frustrated magnets (chiral spin liquids, noncoplanar spin crystals) (<a href="/papers/2306.01664" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Wang et al., 2023</a>, <a href="/papers/1512.00324" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bieri et al., 2015</a>, <a href="/papers/2505.01491" title="" rel="nofollow" data-turbo="false" class="assistant-link" x-data x-tooltip.raw="">Bose et al., 2 May 2025</a>).</li> </ul> <hr> <p><strong>Summary Table: Core Aspects of Chiral Spin Symmetry in QCD</strong></p> <div class='overflow-x-auto max-w-full my-4'><table class='table border-collapse w-full' style='table-layout: fixed'><thead><tr> <th>Feature</th> <th>SU(2)_{CS}Algebra</th><th>EmergenceRegime</th></tr></thead><tbody><tr><td>Generators</td><td> Algebra</th> <th>Emergence Regime</th> </tr> </thead><tbody><tr> <td>Generators</td> <td>\Sigma^1 = \gamma_k,, \Sigma^2 = -i\gamma_5\gamma_k,, \Sigma^3 = \gamma_5</td><td>QCD</td> <td>QCD T_\mathrm{ch},, T>T_d$ Experimental Consequence CME suppression, spectral continuity across deconfinement Lattice QCD, RHIC/LHC Many-body Analogues Chiral spin liquids, topological phases with symmetry fractionalization Frustrated magnets


Chiral spin symmetry thus provides a unifying algebraic and physical framework elucidating the interplay between chiral symmetry, confinement, topological order, and transport in both high-energy and condensed matter systems. Its intricate structure is visible in the emergence of new multiplet patterns, the breakdown of conventional symmetry-protected mechanisms, the appearance of novel transport responses, and the organization of the QCD phase diagram (Catillo et al., 2019, Glozman, 2018, Glozman, 15 Oct 2025, Philipsen et al., 2022, Cincio et al., 2015, Wang et al., 2023, Hirakida et al., 28 Sep 2024, Bose et al., 2 May 2025, Bieri et al., 2015, Shi et al., 2021).

Whiteboard

Follow Topic

Get notified by email when new papers are published related to Chiral Spin Symmetry.