Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Informed Machine Learning for Efficient Sim-to-Real Data Augmentation in Micro-Object Pose Estimation (2511.16494v1)

Published 20 Nov 2025 in cs.CV and cs.AI

Abstract: Precise pose estimation of optical microrobots is essential for enabling high-precision object tracking and autonomous biological studies. However, current methods rely heavily on large, high-quality microscope image datasets, which are difficult and costly to acquire due to the complexity of microrobot fabrication and the labour-intensive labelling. Digital twin systems offer a promising path for sim-to-real data augmentation, yet existing techniques struggle to replicate complex optical microscopy phenomena, such as diffraction artifacts and depth-dependent imaging.This work proposes a novel physics-informed deep generative learning framework that, for the first time, integrates wave optics-based physical rendering and depth alignment into a generative adversarial network (GAN), to synthesise high-fidelity microscope images for microrobot pose estimation efficiently. Our method improves the structural similarity index (SSIM) by 35.6% compared to purely AI-driven methods, while maintaining real-time rendering speeds (0.022 s/frame).The pose estimator (CNN backbone) trained on our synthetic data achieves 93.9%/91.9% (pitch/roll) accuracy, just 5.0%/5.4% (pitch/roll) below that of an estimator trained exclusively on real data. Furthermore, our framework generalises to unseen poses, enabling data augmentation and robust pose estimation for novel microrobot configurations without additional training data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.