Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RaCoT: Plug-and-Play Contrastive Example Generation Mechanism for Enhanced LLM Reasoning Reliability (2510.22710v1)

Published 26 Oct 2025 in cs.AI

Abstract: Retrieval-Augmented Generation (RAG) faces a core bottleneck with knowledge-sparse and semantically ambiguous long-tail queries, where retrieval noise distorts reasoning and necessitates costly post-processing. To tackle this, we propose RaCoT (Retrieval-aware Contrastive-of-Thought), a novel framework that shifts contrastive thinking to the pre-retrieval stage. By automatically generating a semantically adjacent yet differently answered contrastive question and extracting a $\Delta$-Prompt to capture their key differences, RaCoT guides the model to proactively focus on the critical details that determine answer divergence." This approach allows it to suppress semantic interference within a single retrieval pass, overcoming the theoretical bottleneck of single-vector queries that struggle to simultaneously encode signals for what to attend to and what to ignore. On six authoritative benchmarks, including PopQA and TriviaQA-unfiltered, RaCoT outperforms strong baselines like RankRAG and Self-RAG by 0.9-2.4 percentage points. It exhibits superior robustness, with a performance drop of only 8.6\% in adversarial tests, far surpassing the over 15\% degradation in other methods. Furthermore, its low latency (3.12s) and token overhead (11.54) place it on the accuracy-efficiency Pareto frontier, while ablation studies validate the necessity of each component. Ultimately, RaCoT reframes the RAG paradigm frompost-hoc context cleaning" to ``a priori shaping of discriminative reasoning", offering an efficient and robust path toward reliable AI systems for real-time, resource-constrained deployments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.