Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Single-Branch Network Architectures to Close the Modality Gap in Multimodal Recommendation (2509.18807v1)

Published 23 Sep 2025 in cs.IR

Abstract: Traditional recommender systems rely on collaborative filtering, using past user-item interactions to help users discover new items in a vast collection. In cold start, i.e., when interaction histories of users or items are not available, content-based recommender systems use side information instead. Hybrid recommender systems (HRSs) often employ multimodal learning to combine collaborative and side information, which we jointly refer to as modalities. Though HRSs can provide recommendations when some modalities are missing, their quality degrades. In this work, we utilize single-branch neural networks equipped with weight sharing, modality sampling, and contrastive loss to provide accurate recommendations even in missing modality scenarios by narrowing the modality gap. We compare these networks with multi-branch alternatives and conduct extensive experiments on three datasets. Six accuracy-based and four beyond-accuracy-based metrics help assess the recommendation quality for the different training paradigms and their hyperparameters in warm-start and missing modality scenarios. We quantitatively and qualitatively study the effects of these different aspects on bridging the modality gap. Our results show that single-branch networks achieve competitive performance in warm-start scenarios and are significantly better in missing modality settings. Moreover, our approach leads to closer proximity of an item's modalities in the embedding space. Our full experimental setup is available at https://github.com/hcai-mms/single-branch-networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.