Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hyperbolic Coarse-to-Fine Few-Shot Class-Incremental Learning (2509.18504v1)

Published 23 Sep 2025 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: In the field of machine learning, hyperbolic space demonstrates superior representation capabilities for hierarchical data compared to conventional Euclidean space. This work focuses on the Coarse-To-Fine Few-Shot Class-Incremental Learning (C2FSCIL) task. Our study follows the Knowe approach, which contrastively learns coarse class labels and subsequently normalizes and freezes the classifier weights of learned fine classes in the embedding space. To better interpret the "coarse-to-fine" paradigm, we propose embedding the feature extractor into hyperbolic space. Specifically, we employ the Poincar\'e ball model of hyperbolic space, enabling the feature extractor to transform input images into feature vectors within the Poincar\'e ball instead of Euclidean space. We further introduce hyperbolic contrastive loss and hyperbolic fully-connected layers to facilitate model optimization and classification in hyperbolic space. Additionally, to enhance performance under few-shot conditions, we implement maximum entropy distribution in hyperbolic space to estimate the probability distribution of fine-class feature vectors. This allows generation of augmented features from the distribution to mitigate overfitting during training with limited samples. Experiments on C2FSCIL benchmarks show that our method effectively improves both coarse and fine class accuracies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube