Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperbolic Space with Hierarchical Margin Boosts Fine-Grained Learning from Coarse Labels (2311.11019v1)

Published 18 Nov 2023 in cs.CV, cs.LG, and cs.MM

Abstract: Learning fine-grained embeddings from coarse labels is a challenging task due to limited label granularity supervision, i.e., lacking the detailed distinctions required for fine-grained tasks. The task becomes even more demanding when attempting few-shot fine-grained recognition, which holds practical significance in various applications. To address these challenges, we propose a novel method that embeds visual embeddings into a hyperbolic space and enhances their discriminative ability with a hierarchical cosine margins manner. Specifically, the hyperbolic space offers distinct advantages, including the ability to capture hierarchical relationships and increased expressive power, which favors modeling fine-grained objects. Based on the hyperbolic space, we further enforce relatively large/small similarity margins between coarse/fine classes, respectively, yielding the so-called hierarchical cosine margins manner. While enforcing similarity margins in the regular Euclidean space has become popular for deep embedding learning, applying it to the hyperbolic space is non-trivial and validating the benefit for coarse-to-fine generalization is valuable. Extensive experiments conducted on five benchmark datasets showcase the effectiveness of our proposed method, yielding state-of-the-art results surpassing competing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.