Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning (2501.09361v1)

Published 16 Jan 2025 in cs.CV

Abstract: Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances. Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes. However, this approach often results in suboptimal class separation of previously learned classes, leading to overlap between old and new classes. Consequently, the performance of old classes degrades on new classes. To address these challenges, we propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes. Our approach involves augmenting feature vectors and assigning proxy labels to these vectors. This strategy expands the feature space, ensuring seamless integration of new classes within the expanded space. Additionally, we employ a self-supervised contrastive loss to improve the separation between previous classes. We validate our framework through experiments on three FSCIL benchmark datasets: CIFAR100, miniImageNet, and CUB200. The results demonstrate that our Feature Augmentation driven Contrastive Learning framework significantly outperforms other approaches, achieving state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube