Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diabatic quantum annealing for training energy-based generative models (2509.09374v1)

Published 11 Sep 2025 in quant-ph

Abstract: Energy-based generative models, such as restricted Boltzmann machines (RBMs), require unbiased Boltzmann samples for effective training. Classical Markov chain Monte Carlo methods, however, converge slowly and yield correlated samples, making large-scale training difficult. We address this bottleneck by applying the analytic relation between annealing schedules and effective inverse temperature in diabatic quantum annealing. By implementing this prescription on a quantum annealer, we obtain temperature-controlled Boltzmann samples that enable RBM training with faster convergence and lower validation error than classical sampling. We further identify a systematic temperature misalignment intrinsic to analog quantum computers and propose an analytical rescaling method that mitigates this hardware noise, thereby enhancing the practicality of quantum annealers as Boltzmann samplers. In our method, the model's connectivity is set directly by the qubit connectivity, transforming the computational complexity inherent in classical sampling into a requirement on quantum hardware. This shift allows the approach to extend naturally from RBMs to fully connected Boltzmann machines, opening opportunities inaccessible to classical training methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.