Online calibration scheme for training restricted Boltzmann machines with quantum annealing (2307.09785v2)
Abstract: We propose a scheme to calibrate the internal parameters of a quantum annealer to obtain well-approximated samples for training a restricted Boltzmann machine (RBM). Empirically, samples from quantum annealers obey the Boltzmann distribution, making them suitable for RBM training. Quantum annealers utilize physical phenomena to generate a large number of samples in a short time. However, hardware imperfections make it challenging to obtain accurate samples. Existing research often estimates the inverse temperature for the compensation. Our scheme efficiently utilizes samples for RBM training also to estimate internal parameters. Furthermore, we consider additional parameters and demonstrate that they improve sample quality. We evaluate our approach by comparing the obtained samples with classical Gibbs sampling, which theoretically generates accurate samples. Our results indicate that our scheme demonstrates performance on par with Gibbs sampling. In addition, the training results with our estimation scheme outperform those of the contrastive divergence algorithm, a standard training algorithm for RBM.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.