Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Boltzmann Sampling by Diabatic Quantum Annealing (2409.18126v3)

Published 26 Sep 2024 in cond-mat.stat-mech

Abstract: Boltzmann sampling plays a key role in numerous algorithms, including those in machine learning. While quantum annealers have been explored as fast Boltzmann samplers, their reliance on environmental noise limits control over the effective temperature, introducing uncertainties in the sampling process. As an alternative, we propose diabatic quantum annealing -- a faster, purely unitary process -- as a controllable Boltzmann sampler, where the effective temperature is tuned via the annealing rate. Using infinite-range and two-dimensional ferromagnetic Ising models, we show that this approach enables rapid and accurate sampling in the high-temperature regime, with errors remaining bounded in the paramagnetic phase, regardless of system size.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com