Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Graph neural networks for learning liquid simulations in dynamic scenes containing kinematic objects (2509.03446v1)

Published 3 Sep 2025 in cs.LG

Abstract: Simulating particle dynamics with high fidelity is crucial for solving real-world interaction and control tasks involving liquids in design, graphics, and robotics. Recently, data-driven approaches, particularly those based on graph neural networks (GNNs), have shown progress in tackling such problems. However, these approaches are often limited to learning fluid behavior in static free-fall environments or simple manipulation settings involving primitive objects, often overlooking complex interactions with dynamically moving kinematic rigid bodies. Here, we propose a GNN-based framework designed from the ground up to learn the dynamics of liquids under rigid body interactions and active manipulations, where particles are represented as graph nodes and particle-object collisions are handled using surface representations with the bounding volume hierarchy (BVH) algorithm. This approach enables the network to model complex interactions between liquid particles and intricate surface geometries. Our model accurately captures fluid behavior in dynamic settings and can also function as a simulator in static free-fall environments. Despite being trained on a single-object manipulation task of pouring, our model generalizes effectively to environments with unseen objects and novel manipulation tasks such as stirring and scooping. Finally, we show that the learned dynamics can be leveraged to solve control and manipulation tasks using gradient-based optimization methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.