Papers
Topics
Authors
Recent
2000 character limit reached

Technical Indicator Networks (TINs): An Interpretable Neural Architecture Modernizing Classic al Technical Analysis for Adaptive Algorithmic Trading (2507.20202v1)

Published 27 Jul 2025 in cs.LG and q-fin.PM

Abstract: This work proposes that a vast majority of classical technical indicators in financial analysis are, in essence, special cases of neural networks with fixed and interpretable weights. It is shown that nearly all such indicators, such as moving averages, momentum-based oscillators, volatility bands, and other commonly used technical constructs, can be reconstructed topologically as modular neural network components. Technical Indicator Networks (TINs) are introduced as a general neural architecture that replicates and structurally upgrades traditional indicators by supporting n-dimensional inputs such as price, volume, sentiment, and order book data. By encoding domain-specific knowledge into neural structures, TINs modernize the foundational logic of technical analysis and propel algorithmic trading into a new era, bridging the legacy of proven indicators with the potential of contemporary AI systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.