Papers
Topics
Authors
Recent
2000 character limit reached

Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

Published 25 Nov 2011 in cs.NE and cs.CE | (1111.5892v2)

Abstract: Though machine learning has been applied to the foreign exchange market for algorithmic trading for quiet some time now, and neural networks(NN) have been shown to yield positive results, in most modern approaches the NN systems are optimized through traditional methods like the backpropagation algorithm for example, and their input signals are price lists, and lists composed of other technical indicator elements. The aim of this paper is twofold: the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and to demonstrate the performance when using Forex chart images as input to geometrical regularity aware indirectly encoded neural network systems, enabling them to use the patterns & trends within, when trading. This paper presents the benchmark results of NN based automated currency trading systems evolved using TWEANNs, and compares the performance and generalization capabilities of these direct encoded NNs which use the standard sliding-window based price vector inputs, and the indirect (substrate) encoded NNs which use charts as input. The TWEANN algorithm I will use in this paper to evolve these currency trading agents is the memetic algorithm based TWEANN system called Deus Ex Neural Network (DXNN) platform.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.