Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization (2507.14746v1)

Published 19 Jul 2025 in cs.LG, math.OC, stat.AP, and stat.ML

Abstract: High-fidelity simulations and physical experiments are essential for engineering analysis and design. However, their high cost often limits their applications in two critical tasks: global sensitivity analysis (GSA) and optimization. This limitation motivates the common use of Gaussian processes (GPs) as proxy regression models to provide uncertainty-aware predictions based on a limited number of high-quality observations. GPs naturally enable efficient sampling strategies that support informed decision-making under uncertainty by extracting information from a subset of possible functions for the model of interest. Despite their popularity in machine learning and statistics communities, sampling from GPs has received little attention in the community of engineering optimization. In this paper, we present the formulation and detailed implementation of two notable sampling methods -- random Fourier features and pathwise conditioning -- for generating posterior samples from GPs. Alternative approaches are briefly described. Importantly, we detail how the generated samples can be applied in GSA, single-objective optimization, and multi-objective optimization. We show successful applications of these sampling methods through a series of numerical examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube